ComeJisyo Project

ヘンリー E. シゲリスト(Henry E. Sigerist)著


偉大な医師たち:伝記による医学史
The Great Doctors:A Biographical History of Medicine 1933
(Grosse Ärzte: Eine Geschichte der Heilkunde in Lebensbildern 1932 )

18 Satorio Santorio (1561-1636) 18 サントリオ (1561-1636)
 Malpighi had completed Harvey's work. Let us go back a little into the opening years of the seventeenth century, the years to which Galilei's dominating figure gave their imprint, since his influence was far-reaching. He was one of the first investigators to practice the modern method of inductive natural science, and many scientists followed in his track. By his activities, by the results he achieved, the value of the new method was much more signally demonstrated than by the theorising of such a writer as Francis Bacon.  マルピギはハーヴィの研究を完成させた。17世紀の始まりに少し戻ってみよう。ガリレイの影響はあまりにも強かったので彼の君臨する像の跡はまだ残っていた。彼は新しい帰納科学の方法を採用した最初の研究者の一人であり多くの科学者たちは彼の足跡に従っていた。新しい方法の価値はフランシス-ベーコンのような著者による理論付けよりも、ガリレイの活動、成果、によってもっと著しく示された。
 From the seventeenth century onward, the destinies of medicine were inseparably associated with those of the natural sciences. A sort of alliance was entered into between medicine and natural science, so that they developed along parallel lines, interpenetrated one another, reciprocally fertilised one another. The tie s between them were closer at one time, laxer at another. Occasionally the natural sciences would become so engrossing that medicine became a mere branch of natural research, thus losing sight of its true task -- cure. Man seemed no more than one among many natural objects, so that doctors forgot that their patients were suffering creatures, equipped with minds as well as bodies. Then there would be a swing the other way, the classical idealist contemplation of nature would move into the foreground, and philosophical trends would predominate. Ever more plainly, however, in the course of the development of knowledge, the natural sciences disclosed themselves to be the indispensable methods for use in effecting medical advances -- invariably fruitful so long as they were kept in their place as methods and medicine retained its autonomy.  17世紀以後における医学の運命は自然科学の運命と密接に結びつけられていた。医学と自然科学のあいだに一種の同盟がつくられ、それらは並行して発展し互いに入り込み双方向に互いに発達を促した。時に自然科学があまりにも興味深くなり医学は自然科学の一部門となり、真の役割すなわち治療を忘れたこともあった。人間は多くの自然対象の一つであるように見なされ医師たちは患者が身体だけでなく心も持つ悩める人であることを忘れた。時には振り子は逆に振れて古典的観念論者による自然の考えが前面に出て哲学的傾向が支配的になることもあった。しかしもっと明白に言うと、自然科学は知識発展の過程において医学の進歩のために欠くことができないものであり、自然科学が方法としての位置を保ち医学が自主性を保つならば常に実りが多い。
 In Galilei's hands the telescope had been remade into the microscope, without which no doctor can do his work to-day. Galileo also discovered the thermometer, and the new implement was at once pressed into the service of medicine. From very early days physicians had been aware of the importance of changes in the temperature of the human body. The increased heat manifest in fever was a conspicuous symptom, and doctors detected it by laying a hand upon the patient's body.  望遠鏡はガリレイの手で顕微鏡に改造され、医師たちは今日顕微鏡が無くては仕事をすることができない。ガリレイはまた温度計を発明しこの新しい道具はすぐに医学に使われた。古代から医師たちは人体の温度の変化が重要であることに気がついていた。発熱として表現される熱の増加ははっきりとした症状であって医師たちは患者の身体に手を当てて気がついた。
 When Galilei flourished, there was an attempt in all fields of scientific research to pass from the subjective description of phenomena to their objective measurement. Temperature had become a physical concept, and it could be expressed in numerical terms. Such a view could not fail to bear fruit in medicine. It was not enough to know merely that a patient was suffering from "fever." Essential to a knowledge of his ailment was that the doctor should be able to determine and to record the slightest oscillation in the degree of fever. The newly invented instrument seemed eminently adapted for this purpose.  ガリレイが盛んなときにはすべての科学研究の領域で現象の主観的な記載から客観的な測定に移る傾向があった。温度は物理学的な概念となり数値で表現されるようになった。このような観点は医学に良い果実を実らせた。患者が単に「高熱」と言うだけでは充分では無かった。患者の病気を知るのに必要なのは医者が熱の温度を測り微細な振動を記録できることであった。新しく発明された器具はこの目的に著しく適当であった。
 The first man to invent what we now call a "clinical thermometer" was a physician from Capodistria, Santorio Santorio. Shrewd of intelligence, with a passion for research, he was, besides being well acquainted with the traditional literature of medicine, inspired by the new methodology of the exact sciences.  今日われわれが「体温計」と呼んでいるようなものを発明した最初の男はカポディストリア(現在はスロヴェニアのコペル)の医師サントリオであった。能力が高く研究に熱心で医学の古典に詳しいだけでなく自然科学の新しい方法の影響も受けていた。
 Santorio had taken his medical degree at Padua in the year 1582. He was generally esteemed for the breadth of his knowledge, for his trustworthy character, and for his zeal. When the court of Poland needed a competent physician, and applied to Padua, Santorio was recommended for the post. It was offered to him, he accepted it, and went to Poland in 1587. Ere long he had an extensive practice, being summoned in consultation to different places in Hungary and Croatia. Returning to Italy in 1611, he became professor of theoretical medicine in Padua. In 1629 he resigned his professorship, and, despite offers from various universities, he settled down in Venice to devote himself to practice and to scientific study.  サントリオは1582年にパドヴァで医学の学位を得た。知識の幅の広さ、信頼できる性質、および熱意によって彼は一般に高く評価された。ポーランドの宮廷がパドヴァに有能な医師を求めたときにサントリオが推薦された。彼は任命され、受諾し、1587年にポーランドに行った。すぐに彼の業務は広がり、ハンガリアやクロアチアの種々の場所に診察を頼まれるようになった。1611年にイタリアに戻りパドヴァの理論医学(=内科学)教授となった。1629年に教授を辞任し、種々の大学から招待されたがヴェネツィアに定着して臨床と科学研究に専念した。
 Santorio wrote seven treatise, which comprise two thick volumes. He began his career as a medical writer with a comprehensive work upon the way of avoiding mistakes in medical practice. Still following the scholastic method, he fortified his statements by quoting as many authorities as possible, yet justified himself, not only "ratione," but also "experiments." This treatise, and also the following one (a commentary running to 763 pages upon Galen's brief Ars medicinae), are medieval in form, but are animated by a new spirit. Both of them contain a great deal of original experience. Nuggets of gold are scattered through them, but are often hard to find amid the sand in which they are embedded.  サントリオは7冊の専門書を書きそのうち2冊は分厚なものであった。彼は医学著作者として医学臨床において誤りを避けるための総合的な書籍を書くことから始めた。まだスコラ学の方法に従っていて可能なかぎり多くの権威者を引用することによって自分の発言を強化していたが、「理性」だけではなく「実験」によっても自己を正当化した。この著書およびこれに続くもの(ガレノスの短い「医学」の763ページに及ぶ注釈書)は形態こそ中世的ではあったが新しい精神が吹き込まれていた。両書ともに独創的な経験が含まれていた。金塊はあちこちに埋め込まれていたが砂の中から探し出すのは困難であった。
 Of a very different character, even externally, is the book upon which Santorio's title to fame mainly rests. It appeared in 1614 under the somewhat obscure appellation Ars de statica medicina, a slender booklet, penned in aphorisms, the upshot of thirty years' experiments. Even in this case, Galen had been the starting-point. Galen had assumed that the skin "breathed" to some extent as well as the lungs; that volatile substance left the body by way of the skin. To what extent did this "perspiratio insensibilis," this invisible sweating, take place? Santorio mooted the question, and he answered it, not speculatively but by the use of the scales. He weighed the body, weighed what was ingested, and weighed the body, weighed what was ingested, and weighed what was passed in the excreta. He constructed a big balance, sitting in one of the scales on a chair with a table in front of him. He recorded the changes in figures, was able to provide his "perspiratio insensibilis" with a numerical expression. He traced in variations under the influence of air and water, of food and drink, of sleeping and waking, of movement and repose, of sexual activity and emotional excitement. He came to the conclusion that the organism gave off several pounds every day by way of insensible perspiration, and he believed that its amount furnished a guide to the diagnosis of various diseases and indications for treatment.  外見的にも極めて異なった性質のものが主としてサントリオの令名を高めた著作である。これは1614年に目立たない「医学静力学理論」の表題で出版された薄い小冊子で30年間の実験の要旨を警句の形で書いたものであった。この場合にもガレノスが出発点になっていた。皮膚は肺と同じようにある程度は呼吸し揮発性物質は皮膚を通して身体から出る、とガレノスはみなしていた。この「不感蒸散」すなわち見えない発汗はどの程度であったろうか?サントリオはこの問題について論じ、推論ではなく秤を使って答えた。彼は体重を量り摂取したものを量り便に出たものを量った。彼は大きな秤を作り秤の皿の上でテーブルを前に置いて椅子に座った。変化を数字で記録し自分の不感蒸散を数字で示すことができた。空気や水、食べ物や飲み物、睡眠や覚醒、運動や休息、性活動、感情の動揺、の影響における変化を追跡した。生体は不感蒸散によって1日あたり数ポンドを排泄しているという結論に達し、この数値によって種々の病気の診断や治療の適応を示すことができると彼は信じた。
 Santorio was well aware that his researches were "new, and unprecedented." He was prepared for attacks, which were indeed, forthcoming. He sent a copy of his book to Galilei, with a letter from which some extract may be made: "Obviously this method I have discovered is of great importance, since it enables us to ascertain the precise amount of that insensible perspiration interference with which is, according to Hippocrates and Galen, the cause of all diseases. The ground for believing this is that the insensible perspiration is more extensive than all the visible and palpable excreta taken together." Nor, indeed, would it matter, if Galen had known nothing about insensible perspiration, "for that this secretion actually exists is sufficient."  サントリオは自分の研究が「新しく前例が無い」ことをよく知っていた。非難はまさに襲いかかろうとし彼はそれにたいして準備した。著書の一冊をガリレイに送り添付した手紙に次のように書いた。「私が発見した方法は明らかに重要である。何故かと言うとヒポクラテスやガレノスによると不感蒸散の異常はすべての病気の原因であり、この不感蒸散をこの方法によって精確に測定することが出来るからである。このことを信ずる理由は不感蒸散は目に見え触ることができるすべての排泄物を合わせたよりも大量だからである。」と。ガレノスが不感蒸散について何も知らなくても問題ではなかった。「不感蒸散が実際に存在することで充分であるから」と。
 Having thus entered upon the path of clinical experiment, Santorio continued to advance along it. Other physiological and pathological phenomena must be capable of exact measurement. It is plain enough to us why the inventation of the clinical thermometer followed upon the use of the scales to determine the amount of insensible respiration.  このように臨床実験の路に入りサントリオはさらに先に進んだ。他の生理学的および病理学的な現象も精確に測定できるはずである。不感蒸散を量るのに秤を使ったのに続いて体温計が発明されたことは容易に理解できる。
 The first of clinical thermometers was a primitive instrument. The globular expanded end of a convoluted capillary glass tube (graduated) was placed in the patient's mouth. The other end of the tube dipped into a vessel filled with water. The temperature was estimated from the amount of warmed air that was expired.  最初の体温計は原始的な器具であった。巻いた目盛つき毛細管の球状に膨らませた端を患者の口に入れた。管の他端は水を満たした容器に浸した。温度は暖かい空気の排出量によって測定された。
 It was likewise necessary, however, that a quantitative determination of the pulse should be taken. According to the hitherto accepted doctrine of the pulse, it was enough to describe the qualities of the beat, which were examined in the utmost detail -- often with a good deal of hair-splitting. But, said Santorio, it was much more important to determine the frequency of the pulse, to count the number of beats within a specified time. This is done to-day with the aid of a watch. But the timepieces that existed at the end of the sixteenth century had no second-hand, nor indeed a minute-hand. Santorio, therefore, constructed a special instruments for readings of the pulse, a "pulsilogium." It was merely a pendulum, a thread by which a leaden ball was suspended. The length of the thread was increased or diminished until the pendulum swung synchronously with the pulse. Its length then gave an objective measure of pulse-rate.  同様に脈拍の定量的決定が必要であった。それまでの脈拍理論によると脈の性質を記載するので充分であった。これは詳細に調べられ重箱の隅をほじくるようであった。しかしサントリオによると一定時間内の脈の数こそ重要であった。今では腕時計を使えば可能である。しかし16世紀末には時計に秒針は無く分針すら無かった。したがってサントリオは脈拍を数える特殊な器械として「プルシロギウム」を作った。これは単なる振り子であって糸に鉛の玉がつけてあった。糸の長さを調節して脈拍と同期して振り子が振動するようにした。この長さは脈拍数の客観的な測定値になった。
 Santorio made another instrument, a hygroscope, designed to record the amount of moisture in the air. Still more remarkable apparatus were designed by this fertile brain: for instance, a suspended couch; an arrangement by which a patient could have a bath while remaining recumbent and making no exertion. Naturally a doctor with such outstanding technical equipment would enrich the surgeon's instrumentarium as well. The most important of his inventions in this field were a new trocar, an instrument for the performance of tracheotomy, and an instrument for the extraction of stones from the bladder.  サントリオは空気中の湿度を測る湿度計を作った。この創意豊かな脳はもっとすばらしい装置を作った。たとえば吊り寝椅子によって患者は横になっていて努力をしないでも入浴できた。もちろんこのように素晴らしい器械を作った医師は外科の器具も豊かにした。彼が発明した器具でもっとも重要なのは気管切開を行ったり膀胱から石を取り出すためのトロカール(套管針)であった。
 Santorio's ideas ran along similar lines to Harvey's. He made the same steps from qualitative to quantitative observation. His method, like the Englishman's、was that of experiment. Both of them thought in mechanical terms. Both of them tried to bring biological phenomena into touch with the fixed laws that prevail in the world of inorganic matter. They were contemporaries, but Santorio was about fifteen years older than Harvey, and his chief work was published fourteen years before the Exercitatio.  サントリオの考え方はハーヴィーと同じであった。彼は質的な観察から量的な観察に進んだ。彼の方法はハーヴィーと同じように実験であった。二人とも機械的に物を考えた。二人とも生物学的現象と確固たる無機世界の法則を結びつけることを試みた。彼らは同時代人であったがサントリオはハーヴィより15歳年上であり彼の主著は「心臓と血液の運動」より14年前に刊行された。
 Their successors, however, gave the palm to Harvey, and regarded Harvey as the founder of modern physiology, of exact biology. There were various reasons for this. Harvey had chosen a more engrossing theme. The problem he investigated was one of extreme actuality; he solved it effectively with the aid of the new methods; and he replaced an erroneous theory which had been dominant for many centuries by a new and sound one. Moreover, he developed his ideas in a work which was a model of clarity, in which nothing of importance was omitted, and which covered the whole field.  後継者たちはハーヴィの勝利をみとめてハーヴィを新しい生理学、精密な生物学の創立者とみなした。種々な理由があった。ハーヴィは人を夢中にさせる問題を選んだ。彼が研究した問題は極めて現実的なものであった。彼はその問題を新しい方法で効果的に解決した。何世紀も勢力を持っていた誤った学説を新しく正しい学説で置き換えた。さらに明快なモデルとなる研究によって自己の考えを発展させた。この研究は重要なものを何ものも省略せずに全領域を覆っていた。
 Santorio used like methods, but his chosen field, that of insensible perspiration, was of much less interest to the doctors of his day than the problem of the circulation of the blood. Besides, it was far too complicated for full and definitive solution by the light of those days. There were inevitable and numerous discrepancies in the figures he recorded. Centuries had still to pass before precise calculations were to become possible in this domain. Harvey was a master of condensation, of restriction. He made no allegations except concerning matters for which he could provide solid foundations. Santorio deduced from his observations conclusions that were far too comprehensive. He made insensible perspiration the basis of all pathological happenings.  サントリオは同じような方法を用いたが彼の選んだ領域すなわち不感蒸泄は血液循環にくらべて当時の医師にとって興味が無かった。その他に不感蒸泄は当時の知識にとって完全に決定的な解決をするにはあまりにも複雑であった。彼が記録した数値には避けることができない数多くの矛盾があった。この領域で精確な計算が可能になるには数世紀の経過が必要であった。ハーヴィは要約し限定するのに秀でていた。彼は学問的に信頼できる事柄でなければ主張しようとしなかった。サントリオは自己の観察からあまりにも包括的な結論を出した。彼は不感蒸泄をすべての病的現象の基本であるとした
 Finally, Santorio chose a most unhappy form in which to make the result of his investigations known to the world. His Statica medicina is penned in aphorisms. Valuable as brevity is, if injudiciously used it leads to obscurity, and that was what happened in Santorio's case. His account of the way his experiments were organised, and his calculations, lacked detail and precision. His observations and his descriptions of his new instruments, as contained in his other writings, are buried in prolix commentaries upon Galen and Hippocrates, and, pre-eminently, in a commentary upon the first section of the first book of Avicenna's Cannon. He was a man of genius who made great discoveries, but he did not know how to turn them to account, and it was not till long after his death that his instruments, modified and greatly improved, were revived to enrich the science and practice of medicine.  最後に、サントリオは自分の研究を世の人に知らせるのに最も不適当な形をとった。彼の「医学静力学理論」は警句で書かれていた。これは利点として簡潔であったが無分別に使われると不明瞭になってしまう。サントリオのばあいにこのことが起きた。実験方法および計算について詳細で精確な記述が欠けていた。彼の観察および新しい機械についての記載は他の著作に含まれガレノスおよびヒポクラテスについての冗漫な注釈およびとくに顕著なこととしてアヴィセンナの「医学の規範」の第一の本の第一の部分についての注釈に埋もれている。サントリオは偉大な発見をした天才ではあったが記載の方法を知らず、彼の器具が手直しされ改良されて生き返り医学の学問ならびに実践を豊かにしたのは、彼が死去してそれほど後のことではなかった。
 These defects notwithstanding, Santorio takes honourable place among the constructive geniuses to whom the development of modern medicine is due.  これらの欠点があるにもかかわらずサントリオは現代医学に貢献した建設的な天才のあいだで名誉ある地位を占めている。